
Monte Carlo Tree Search for Generating Interactive Data Analysis Interfaces
Yiru Chen Columbia University.

Background: Interfaces and Tasks
General purpose interfaces:
Can do a lot, but complex to use.

Specialized (Precision) interfaces
Designed for specific task, but easy to use, simple

Problem: Building Interfaces is Hard L

1. Expensive to learn user’s analysis
tasks + build interface

2. Dashboard builders limited in analysis
complexity or require programming

3. Prior work auto-generates forms using
database contents, but ignores analysis
task may be complex if DB has many
tables+attrs

Example: View Mapping and LinkingMain Contribution

Overview

Problem Statement: Given query log, view types,
Find lowest cost interface and layout where all queries can be expressed.

1. Cluster metrics
• Project attribute union compatible
• Overall query similarity etc.

2. Parse: Queries modeled as abstract syntax trees

3. Monte Carlo tree Search:
• The layout and the selected views are intertwined with the process

of identifying subtree differences between the input query ASTs.
Search space is very large.

• Method: UCT algorithm
• Reward: Randomly assign views and greedily link k times to pick the

lowest cost.

4. Cost Estimation for view mapping and linking:
appropriateness of each view + usefulness + layout score

Acknowledgement: Eugene Wu, , ,

PhotoshopExcel Tableau

High costs à interfaces mainly built for high
profile tasks that are “worth it”

“Unpopular” tasks ignored, but they are
important for their users!Tasks

pe

op
le

ignored long tail

What is an Interface?

SELECT date, visit FROM T WHERE state=‘CA’;
SELECT date, visit FROM T WHERE state=‘NY’;
SELECT city, cost FROM R WHERE date BETWEEN 1 AND 10;
SELECT city, cost FROM R WHERE date BETWEEN 10 AND 20;

SQL

SELECT NAME,UCD FROM DBCOLUMNS WHERE
TABLENAME = 'PHOTOOBJALL' AND (NAME LIKE
'OBJID' OR NAME LIKE 'RA' OR NAME LIKE
'DEC' OR NAME LIKE 'TYPE' OR NAME LIKE
'U' OR NAME LIKE 'G' OR NAME LIKE 'R'
OR NAME LIKE 'I' OR NAME LIKE 'Z' OR
NAME LIKE 'ERR_U' OR NAME LIKE 'ERR_G'
OR NAME LIKE 'ERR_R' OR NAME LIKE
'ERR_I' OR NAME LIKE 'ERR_Z' OR NAME
LIKE 'PSFMAG_U' OR NAME LIKE
'PSFMAGERR_U' OR NAME LIKE 'PSFMAG_G' OR
NAME LIKE 'PSFMAGERR_G' OR

Query logs as a proxy for analysis tasks to directly generate interface.

Previous Work: Precision interface V1[1]

Jupyter Notebooks
Recovery logs
Provenance
Any database app

Analyze
Logs

Gen.
Interface

Limitation

1. Visualization &
Interaction over
Visualization

2. Layout and Usability

Compared to previous work which only generates a set of widgets,
this work enhances the generated interface quality from:

1. Automatically generate an optimal set of views, including
widgets and visualizations, and the interaction over the views.

2. Consider hierarchical layout as well as the usability in terms of
how easy to express the query log.

3. A generic frontend engine which takes a specification as
input and output a web app.

[1] Zhang, et al. “Mining Precision Interfaces From Query Logs.” SIGMOD(2019)

Views: <v1, v2, v3>
Interactions: < I1, I2>
Layout: Horizontal(

Vertical(V2, V1), V3)
Backend: DB

City

Cost

Date

Visit

A B

CAStateV1

V2 V3

I1

I2

precision interface V1.

SQL, e.g
Select date, visit from T where state = ‘CA’
Select city, cost from R where data between 1 and 10

Try different cluster metrics to search for the optimal one

Clustering
……

Cluster 1
Q1, Q2,…

Parsing

Cluster K
Q3, Q4,…

ANY

Q1
Q2

……

MCTS
View

Mapping/Linking

ANY

Q3
Q4

……

DiffTrees

<spec>
Backend: {…}
View: {…}
Interaction:{…}
Layout: {…}

After we get the final difftree, we search for the optimal view
mapping and linking. Layout will be expressed by assigning layout
node: Horizontal and Vertical to ALL node.

Layout sensitive interface generated from 10 Sloan Digital Sky Survey
(SDSS 2017) queres.

Interactive visualization interface generated from falcon flights
query log.

Precision
Interfaces

Front-end
Engine

Back-end
Server<spec>

Backend: {…}
View: {…}
Interaction:{…}
Layout: {…}

Preliminary Results

Generic Frontend Engine

ALL(Select)

ALL(Project) From/Table ALL(Where/BiExpr)
op:=

ColExpr ColExpr

T

date visit
ColExpr
state

StrExpr
CA

ANY

StrExpr
NY

ALL(Select)

ALL(Project)
From/Table

OPT(Where/BtwExpr)

ColExpr ColExpr

R

city cost
ColExpr
date

IntExpr
1

ANY

IntExpr
10

IntExpr
10

ANY

IntExpr
20

V1: Drop DownV2: Line Chart
BrushV3: Bar Chart

