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ABSTRACT

As data analytics becomes mainstream, and the complexity of the
underlying data and computation grows, end-users will increas-
ingly rely on visualizations to present simplified statistics that sum-
marizes interesting properties in the data. It is even more impor-
tant to provide tools that help analysts understand the underlying
reasons when they see anomalous results. We envision adding a
new explanatory dimension into visualization libraries and creation
tools that automatically give end-users the capability to mine and
understand the reasons for outliers and trends that they see in the
visualizations. In this paper, we propose an initial problem formu-
lation targeted towards business dashboard applications, and pro-
pose a set of modifications to existing declarative visualization li-
braries that enables this ability in existing visualizations with min-
imal changes by the developer.

1. INTRODUCTION

Visualizations are arguably the most common way end-users con-
sume datasets and have long been a key tool for understanding
data due to their ability to convey key statistics at a glance. Ser-
vices such as Google Analytics provide pre-built visualizations cus-
tomized to a specific type of dataset. Business intelligence visual-
ization tools, such as Qlik View and Tableau let end-users interac-
tively explore and build custom dashboards through a visualization
front-end that sends SQL queries to an OLAP-style data store. Fi-
nally, tools such as Tenzing [3] and Hive [9] are designed to make
“big data” analysis accessible to financial and business analysts
through a SQL-like interface. The results are manually rendered
using a separate visualization tool.

We dub these systems What Visualization Systems because they
easily answer “what” type questions by transforming and comput-
ing aggregate statistics. For example, “what are the total hat sales
this month”, or “how many users came to the website and never
returned (bounce rate)?”. They are typically structured as a visual-
ization front end that issues queries to a SQL backend. Users may
even be able to slice and dice the statistics to examine how they
vary across dimensions.

However, these systems are fundamentally report generation tools
that display summary statistics. For example, they are able to re-
port that a website’s bounce rate is high, but are unable to explain
why it is high. However this is exactly what an analyst is interested
in — the user subsets that are exhibiting high bounce rates so that
the website can be optimized for those users. Such subsets may be
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defined by complex predicates, e.g., they may be users with certain
version of Firefox that crashes rendering the page, or visitors from
a certain subnet or ISP that is experiencing outages. What Visual-
ization Systems currently do not exist, leaving users perform these
kinds of inferences themselves.
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Figure 1: Mean and standard deviation of temperature read-
ings from Intel sensor dataset

As a simple example, consider a deployment of sensors places
throughout throughout a building. Each sensor records tempera-
ture, sound, humidity, light and other readings, and have associated
metadata like a unique identifier and location coordinates. A typi-
cal dashboard may present the average and standard deviation tem-
perature readings in 30 minute intervals (Figure 1 — this data was
derived from the Intel sensor dataset '). An end-user may want to
understand why the standard deviation fluctuates heavily (Region
1) and why the temperatures spikes (Region 2). It turns out that the
former is due to sensors near windows that heat up under the sun
around noon, while sensors running out of energy (indicated by low
voltage) start producing erroneous readings in the latter. However,
these facts are not obvious from the visualization and require man-
ual inspection of the attributes of the readings that contribute to the
outliers to determine what is going on. What is needed is a tool that
can automate analyses such as determining that an outlier point is
due to the location or voltage of the sensors that contributed to it.

Having a tool such as this would be useful in many other set-
tings, including business intelligence and medical data analysis. As
areal-word example (details anonymized), a doctor at a major hos-
pital spent six months seeking to understand areas why the hospital
was spending millions on a very small population of patients and
if the hospital could reduce the costs without impacting mortality
rates. He manually analyzed a number of dimensions (e.g., type
of treatment, type of service) and isolated the costs to chemother-
apy treatment. He later found that two doctors were responsible for
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a large fraction of the costs because they over-prescribed unneces-
sary procedures. In this case, simply finding individually expensive
treatments would be insufficient because the hospital is interested
in descriptions of costs that are actionable.

In contrast to this manual, trial and error process, we envision a
new type of data analysis tool, called a Why Visualization System,
that interactively automates why analysis, in addition to supporting
existing visualization interactions. Users use the system by high-
lighting arbitrary outlier elements in a visualization — such as a bar
that is too high, or a set of anomalous points in a scatter plot — and
specifying a small number of constraints (e.g., are the outliers too
high or too low?). Our envisioned system then identifies the sets of
input tuples that generated the suspicious outputs (e.g., the tuples
in a GROUP BY group), and uses sensitivity analysis to further re-
duce the inputs to the subsets that most influence the output value
in a way that makes it suspicious. Results are returned to the user
as a set of predicates that describe each influential input subset and
are automatically rendered in a plot.

It is important that such a system is tightly integrated into the
visualization system. In most cases, the end-user that is consuming
the visualization and identifying the anomalies is not the visualiza-
tion creator, and may not have the access credentials nor knowledge
to investigate the raw data. Integration enables any user in an orga-
nization to perform analyses that are otherwise restricted to a small
group of analysts.

Building a Why Visualization System entails solving a number of
key questions, including:

1. What are the useful classes of why queries?

2. What are efficient algorithms to execute these queries?

3. How can visualization systems and libraries support why anal-
ysis without burdening visualization developers?

We are currently implementing a prototype system called DB-
Wipes to address the above questions. In Section 2, we describe
the problem in the context of database lineage, and propose an
extension called explanatory lineage to incorporate the notion of
influential inputs. We introduce the problem statement and sev-
eral promising algorithms for identifying the related properties of
outliers in Section 3. Section 4 then illustrates an end-user walk-
through when using DBWipes and describes several methods to in-
tegrate with an existing declarative visualization engine or library
in a way that minimizes the amount of programmer effort necessary
to additionally support why-type lineage queries.

2. EXPLANATORY LINEAGE

This problem of why visualizations is closely related to the prob-
lem of database lineage, which involves tracking what set of input
results contributed to an output result in a database query. This sec-
tion briefly introduces database lineage and motivates the need for
our extension called explanatory lineage, which augments lineage
with the concept of input influence. We then describe two defini-
tions of influence for different statistical aggregation operators.

2.1 Motivation

Lineage systems [10] record and query the history of data that
flows through a workflow or database system. The runtime stores
the parameters of every operator execution as well as the relation-
ships between the operator’s input and output data. A user can later
specify a set of outputs and investigate a) the set of operators that
were executed to generate the outputs and b) the inputs to any of
the executed operators that were used to compute the output val-
ues. The former we call a coarse-grained lineage query whereas
the latter is a fine-grained lineage query.

While these systems have traditionally focused on returning in-

puts at the dataset or file level (e.g., the output was generated by
the the data files X and Y), relational and scientific database sys-
tems support lineage at the granularity of individual tuples or array
elements. This support is ideal when operator fan-in (the number
of inputs that generate an output) is low.

Unfortunately, visualization dashboards typically render aggre-
gate statistics computed from large datasets. These high fanout ag-
gregate functions are a key limitation of existing lineage systems,
because they assume that every input tuple has equal weight on
the result value. For example, consider a financial analyst that in-
teracts with a visualization and discovers the output value of the
query SELECT sum(cost) FROM expenses is too high and
wants to understand which expenses are high, and why they are
high. Existing lineage systems will return every tuple in the ex-
penses relation because all of their values were used to compute
the result. Although this is correct, it is not useful to the end user
who is interested in the most influential expenses. Instead, because
the largest expenses clearly influence the query result more than the
cheaper expenses, it would be preferable to report a ranked list of
expenses, and to perform some analysis of the common attributes of
those expenses to help the analyst understand why those expenses
are high.

This need motivated us to define explanatory lineage. In con-
trast to existing lineage queries, which return all inputs that com-
puted user specified output values, explanatory lineage ranks the
inputs by influence using sensitivity analysis and identifies clusters
of influential inputs by their common attributes. The clusters are re-
turned in the form of SQL-style predicates that succinctly describe
the data in the clusters. The general problem is to rank the predi-
cates that most influence the output, and return the top-k, and then
cluster the top-k by their common properties. In some cases, doing
this ranking is straightforward (e.g., for SUM queries), but can be
hard for arbitrary user-defined aggregates. In addition the logic for
clustering is is tricky, because it requires analyzing all attributes of
the most influential tuples to cluster them together.

2.2 Notions of Influence

In order to approach this problem, we need to define a notion of
influence. Our current investigation is in the context of additive er-
rors — errors that can be resolved by deleting inputs — for common
statistical functions. Alternative types of errors are perturbation er-
rors that can be fixed by updating the inputs to a well defined value
(e.g., set the costs in the highest quartile to the median). We have
found that the type of explanatory queries that are meaningful to
run, and consequently the specific notion of influence, depends on
specific type of aggregate function. The rest of this section exam-
ples of queries for several common statistical functions.

Consider the mean statistical function. Each input contributes in-
dependently to the output, and the results are normalized such that
the output value doesn’t grow with the number of inputs. A lin-
eage query may be “why is the mean temperature so high?”, which
defines the influence of a predicate as the expected change in the
output if the inputs satisfying the predicate were deleted from the
computation. Other statistical functions such as standard devia-
tion and pearson’s correlation share similar properties. call these
queries heavy hitter queries, and the influence heavy hitter influ-
ence.

In contrast, for functions such as count, every input influences
the output equally, and the influence of a set of inputs depends on
the set size. Essentially, different input sets cannot be compared
with one another, otherwise the most influential predicate would
simply be TRUE. Such functions require a different notion of in-
fluence. One possible notion is to compare against user specified



baseline “normal” output values. For example, consider a chart that
compares the number of homicides in each US state. A meaningful
query may be “why is the homicide rate in California higher than
the rates in Massachusettes or Hawaii, which both look normal?”
. This notion of influence is defined by how much more deleting
the inputs that satisfy the predicate change the suspicious” output
over the change of the “normal” output. The sum function has a
similar notion. We call these queries comparison queries, and the
influence comparison influence.

Extrema function such as min and max do not have meaningful
definitions because the lineage is input is the same as the output.
Thus, we do not consider such functions.

While we have described notions of influence for standard statis-
tical functions, we are interested in understanding tractable notions
for more complex aggregates such as SVMs, decision trees, and
k-means. This is one of the key challenges in our research agenda.

3. IMPLEMENTATION

Section 2.2 introduced two explanatory lineage queries and no-
tions of influence. In this section, we outline the general problem
description and variants for the different notions of influence. We
then sketch several algorithms that we are pursuing.

3.1 Problem Statement

We assume that a visualization has been rendered as the result of

aGROUP BY SQL query over a table 7" with k attributes, a1, - - - , ag.

Additionally, assume that the query consists of a single statistical
aggregate function, A. Suppose the user has selected an output re-
sult, opqaq, specified if the value is “too high” or “too low”, and
assigned weights to error functions as described below.

Let D,,,, C T be the set of input tuples that were used to com-
pute opad.

Let P be the space of all distinct possible predicates over Do, .,
where a predicate p € P is defined as the conjunction of range
clauses over the continuous attributes and set containment clauses
over the discrete attributes. Two predicates are distinct if they re-
turn different sets of inputs when applied to D,,,,. Each column
is present in at most one clause.

We would like to to find predicates that maximally reduce the
value of op44 (if the user flagged it as too high), or maximally in-
crease it (if the user flagged it as too low.) In general, we assign a
score(p, D) to p over D, and find the top-k predicates px1, - - - , p*x
ordered by their score value. This is difficult because it requires
repeatedly evaluating the scoring function (and consequently, the
aggregate function) over different subsets of D.

The scoring function depends on the aggregate and the type of
user defined error. For example, explanatory lineage queries over
mean and standard deviation type functions use:

ovaa — A(p(D)) output too high
A(p(D)) — ovaa output too low

score(p, D) = {

In contrast, count type functions also depend on a baseline output
result. For these functions, we assume that the user has selected a
baseline output, 04004. These queries should return predicates that
most influence A(D,,,,) but not A(D,,,,). For example, the
user may want to know the segment of users had the highest bounce
rates that are different than the users from last week’s web logs. In
this case, she can define the baseline as data from last week.

We extend P to be the space of all distinct predicates over D, , ,U
Do, We define a scoring function, score(p, D, D"), that also

accepts the baseline dataset as an additional argument, D’, and

depends on score(p, D) defined above. Finally, we introduce a
penalty term, \:

score(p, D, D') = A score(p, D)+ (1 — \) x score(p(D"), D)
3.2 Algorithms

Efficient algorithms for finding the optimal predicate ultimately
depend on properties of the scoring function and the aggregate
function. For example, whether the aggregate function is distribu-
tive, algebraic, or holistic. We now sketch several approaches that
we are currently pursuing.

3.2.1 A Naive Algorithm

The naive approach is to exhaustively enumerate and evaluate
all possible predicates. This approach first lists all distinct single-
attribute clauses (clauses c; and cp are equal if and only if they
result in identical results over D), then enumerates all non-empty
conjections of clauses with different attributes. This algorithm is
clearly exponential in the number of attributes. To bound the run-
time, the user can specify a maximum number of clauses, Nciquses
and limit the search to predicates will less than ncjquse Clauses.

3.2.2  Top Down Approach

We are currently investigating a top-down sampling based ap-
proach for aggregate functions (e.g., mean, standard deviation) whose
inputs contribute independently to the output, and have well de-
fined estimators. Since they have well defined estimators, we can
also construct estimators of the influence.

The algorithm recursively bisects the attribute space to find parti-
tions with low score values. Each partition is equilavent to a predi-
cate. It evaluates a given partition by computing the mean and vari-
ance of the score on a random sample of the tuples in the partition
by using the estimators. If the expected error between the estimated
score and the true value is below than a user-defined threshold, then
the algorithm can stop evaluating the partition. Otherwise, the sam-
ple is used to decide the next dimension to split on. The algorithm
can create partitions that are smaller than desired, so a final merg-
ing step is used to merge adjacent, influential, partitions. A benefit
of this approach is that the scores of indiviual inputs can be memo-
ized so that overlapping predicates can re-use previously computed
scores.

A key insight is that the termination threshold does not need to
be constant. Since the algorithm is searching for partitions with the
minimum score value, partitions with high score can have a higher
threshold. For example, if score values range from 1 to 100, the
user is interested in partitions where score < 20. Thus, if the mean
score is 90, then a variance of 10 may be acceptable, whereas the
same variance is not acceptable when the mean score is 10.

3.2.3 Bottom Up Approach

We are also considering several bottom-up approaches. In the
first approach, we are attempting to reformulate the queries as a
clustering problem, in order to re-use existing solutions. For exam-

ple, consider a COUNT(*) query and an algorithm such as CLIQUE [1].

CLIQUE finds bounding boxes around maximally sized dense clus-
ters and generates results in the form of predicates.

If we compute the union of the suspicious and baseline datasets,
and assign them weights of 1 and -1, respectively, we can re-use the
clustering algorithms by re-defining cluster size as the total weight
of the cluster rather than the tuple count. The maximal cluster is
naturally the predicate that most influences Do, over Do, ,-

An alternative approach can start with an initial set of predicates,
and iteratively merge adjacent predicates while the resulting score



continues to improve. The key benefit of this approach is that it can
relax the independence assumption used in the other approaches.

4. USER AND VISUALIZATION SUPPORT

Now that we’ve described the formal model of explanatory lin-
eage, we turn to our envisioned interface for how a user would in-
teract with a explanatory lineage system. In addition to illustrat-
ing the UI, our goal is to highlight places where the visualization
developer must explicitly modify her code. Assuming that a vi-
sualization is written using a declarative framework that separates
the mapping of data to visual elements from the actual rendering,
we believe a majority of changes can be made to the visualization
library without affecting the developer.

The rest of this section is described in the context of the javascript
visualization library D3 [2], however the same ideas can be applied
to any other declarative visualization framework.

D3 is a library that declaratively binds a set of data to a set web
page (DOM) elements that are rendered by a web browser. Each
DOM element is tied to a single data item, and additionally sets
the DOM attributes based on functions over the data item. For ex-
ample, consider the SQL query SELECT day, count (%) AS
bouncerate FROM web_log. D3 can bind the result set to
cicle DOM elements, which will create a circle element for each
tuple in the result. The x, and y coordinates of the circles are de-
fined as DOM attributes whose values depend on the result day and
bouncerate attributes, respectively.

d3 ("html’) .selectAll ('circle’)
.data (results)

.enter () .append(’circle’)
.attr('x’, function(dataitem) {
return dataitem.day;

}
.attr('y’, function(dataitem) {
return dataitem.bouncerate;

b

Select type of error

Figure 2: Figure 1 augmented with explanatory lineage.

DBWipes extends the library to track which DOM elements and
attributes that are bound to data. At any time, the user can go into
why mode to interactively select data that appears suspicious (Fig-
ure 2). In this mode, DBWipes displays a list of DOM element
names (e.g., “Avg(temp): circle”, “StdDev(temp): circle”) and their
associated attributes (e.g., size, X, y, color) . When a user hovers
over an element name (e.g., “Avg(temp): circle”) or attribute, the
corresponding elements in the visualization are highlighted (e.g.,
red circles). Users select an individual or a group of rendered DOM
elements (e.g., black bordered box) to specify the tuples that are
supicious, and click on the attribute to specify the suspicious value.
The library can automatically add the appropriate event handlers
and highlight values. The developer adds functions to render a but-
ton to enter why mode, and list the element and attribute names.

DBWipes then creates a lineage Ul that elicits additional infor-
mation from the user, such as if the suspicious values are too high
or low, normal output values, and error function weights. The de-
veloper only needs to add a container to contain the lineage UL

The result predicates are rendered as a list. When the user clicks
on a predicate, the original query is filtered by the predicate, and
the subset of data is used to re-render the existing visualization.
Thus, the user can toggle between the orginal query and the result
predicate to visually inspect the predicate’s influence.

An added benefit of explanatory lineage is that it indirectly per-
forms dimensionality reduction. A key difficulty when visualizing
high dimensional datasets is that visualizations are fundamentally
2-3 dimensional, and picking the optimal dimensions to plot is very
difficult. Typical approaches use feature selection techniques [7] or
PCA. On the other hand, the result predicates typically have a small
number of clauses, which define the precise dimensions that distin-
guish the good and bad inputs. DBWipes can automatically create
visualizations comparing the input points along the dimensions ref-
erenced in the predicates.

In each of the above steps, the minimum amount of work a visu-
alization designer needs to perform is to define containers to render
dialogs, buttons, and automatically generated plots.

S. CONCLUSION

The ultimate goal of data management is to make data easier to
understand, whether that means making the interaction loop shorter
(core database performance), seamlessly combining data from dis-
parate sources (data integration), or making data more comprehen-
sible (data visualization). Researchers have done a tremendous job
helping bring data management to end-users through visual query
languages and interfaces [8], intelligent cleaning tools [6, 5], and
popularizing data-driven mashups [4]. Yet the core way that peo-
ple consume and understand data, data visualizations, has stagnated
to the “what” interfaces that simply summarize. We hope that ex-
planatory lineage can add a new dimension of “why” to visualiza-
tions that will further encourage end-users to explore and better
understand their data.
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